
DECIDABLE 

 A problem P is decidable if it can be solved by a 

Turing machine T that always halt. (We say that P 

has an effective algorithm.) 

  

 Note that the corresponding language of a 

decidable problem is recursive. 

  

  

  



UNDECIDABLE 

 A problem is undecidable if it cannot be solved by 

any Turing machine that halts on all inputs. 

  

 Note that the corresponding language of an 

undecidable problem is non-recursive. 



COMPLEMENTS OF RECURSIVE LANGUAGES 

 Theorem: If L is a recursive language, L is also 

recursive. 

 Proof: Let M be a TM for L that always halt. 

We can construct another TM M from M for 

L that always halts as follows: 
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COMPLEMENTS OF RE LANGUAGES 

 Theorem: If both a language L and its complement 

L are RE, L is recursive. 

 Proof: Let M1 and M2 be TM for L and L 

respectively. We can construct a TM M from 

M1 and M2 for L that always halt as follows: 

Accept 

Accept 

Accept 

Reject 

M1 
M 

Input 

M2 



A NON-RECURSIVE RE LANGUAGE 

 We are going to give an example of a RE language 

that is not recursive, i.e., a language L that can be 

accepted by a TM, but there is no TM for L that 

always halt. 

 Again, we need to make use of the binary encoding 

of a TM. 



Recursive 

Recursively 

Enumerable (RE) 

Non-recursively 

Enumerable (Non-RE) 

Ld 

We will now 

look at an 

example in 

this region. 



A NON-RECURSIVE RE LANGUAGE 

 Recall that we can encode each TM uniquely as a 

binary number and enumerate all TM’s as T1, T2, …, 

Tk, … where the encoded value of the kth TM, i.e., 

Tk, is k. 

 Consider the language Lu: 

 Lu = {(k, w) | Tk accepts input w} 

 This is called the universal language. 



UNIVERSAL LANGUAGE 

 Note that designing a TM to recognize Lu is the 

same as solving the problem of given k and w, 

decide whether Tk accepts w as its input. 

 We are going to show that Lu is RE but non-

recursive, i.e., Lu can be accepted by a TM, but 

there is no TM for Lu that always halt. 



UNIVERSAL TURING MACHINE 
 To show that Lu is RE, we construct a TM U, called 

the universal Turing machine, such that Lu = L(U). 

 U is designed in such a way that given k and w, it will 

mimic the operation of Tk on input w: 

1 1 1 1 1 1 0 

k w 

U will move back and forth to mimic Tk on input w. 
separator 



UNIVERSAL TURING MACHINE 

(k, w) Tk 
w 

Accept Accept 

U 

Why cannot we use a similar method to construct 

a TM for Ld? 

i.e., k1111110w 



UNIVERSAL LANGUAGE 
 Since there is a TM that accepts Lu, Lu is RE. We are 

going to show that Lu is non-recursive. 

 If Lu is recursive, there is a TM M for Lu that always 

halt. Then, we can construct a TM M’ for Ld as follows: 

k Copy 
k1111110k 

M 
Accept 

Reject 

Reject 
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M’ 



A NON-RECURSIVE RE LANGUAGE 

 Since we have already shown that Ld is non-recursively 

enumerable, so M’ does not exist and there is no such 

M. 

 Therefore the universal language is recursively 

enumerable but non-recursive. 



HALTING PROBLEM 

 Consider the halting problem: 

 Given (k,w), determine if Tk halts on w. 

 It’s corresponding language is: 

Lh = { (k, w) | Tk halts on input w} 

 The halting problem is also undecidable, i.e., Lh is 

non-recursive. To show this, we can make use of 

the universal language problem. 



HALTING PROBLEM 

 We want to show that if the halting problem can be 

solved (decidable), the universal language problem 

can also be solved. 

 So we will try to reduce an instance (a particular 

problem) in Lu to an instance in Lh in such a way 

that if we know the answer for the latter, we will 

know the answer for the former. 



CLASS DISCUSSION 

 Consider a particular instance (k,w) in Lu, i.e., we 

want to determine if Tk will accept w. Construct an 

instance I=(k’,w’) in Lh from (k,w) so that if we know 

whether Tk’ will halt on w’, we will know whether Tk will 

accept w. 



HALTING PROBLEM 

 Therefore, if we have a method to solve the halting 

problem, we can also solve the universal language 

problem. (Since for any particular instance I of the 

universal language problem, we can construct an 

instance of the halting problem, solve it and get the 

answer for I.) However, since the universal problem is 

undecidable, we can conclude that the halting problem 

is also undecidable. 



MODIFIED POST 

CORRESPONDENCE PROBLEM 

 We have seen an undecidable problem, that is, 

given a Turing machine M and an input w, 

determine whether M will accept w (universal 

language problem). 

 We will study another undecidable problem that is 

not related to Turing machine directly. 



MODIFIED POST CORRESPONDENCE PROBLEM 

(MPCP) 

 Given two lists A and B: 

   A = w1, w2, …, wk B = x1, x2, …, xk 

 The problem is to determine if there is a sequence of 

one or more integers i1, i2, …, im such that: 

 w1wi1
wi2

…wim
 = x1xi1

xi2
…xim 

 
 

 (wi, xi) is called a corresponding pair. 



EXAMPLE 

A B 

i 

1 

2 

3 

wi 

1 

0111 

10 

xi 

111 

10 

0 
This MPCP instance has a solution: 3, 2, 2, 4: 

w1w3w2w2w4 = x1x3x2x2x4 = 1101111110 

4 

11 1 



CLASS DISCUSSION 

A B 

i 

1 

2 

3 

wi 

10 

011 

101 

xi 

101 

11 

011 

Does this MPCP instance have a solution? 



UNDECIDABILITY OF PCP 

 To show that MPCP is undecidable, we will reduce the 

universal language problem (ULP) to MPCP: 

  

  

  

 If MPCP can be solved, ULP can also be solved. Since we 

have already shown that ULP is un-decidable, MPCP must 

also be undecidable. 

Universal 

Language 

Problem (ULP) 

MPCP A mapping 



MAPPING ULP TO MPCP 

 Mapping a universal language problem instance to 

an MPCP instance is not as easy. 

 In a ULP instance, we are given a Turing machine 

M and an input w, we want to determine if M will 

accept w. To map a ULP instance to an MPCP 

instance success-fully, the mapped MPCP instance 

should have a solution if and only if M accepts w. 



MAPPING ULP TO MPCP 

Given: 

(T,w) 

Two lists: 

A and B 

Construct an 

MPCP instance 

If T accepts w, the two lists can be matched. 

Otherwise, the two lists cannot be matched.  

ULP instance MPCP instance 



MAPPING ULP TO MPCP 

 We assume that the input Turing machine T: 

 Never prints a blank 

 Never moves left from its initial head position. 

 These assumptions can be made because: 

 Theorem (p.346 in Textbook): Every language accepted by 

a TM M2 will also be accepted by a TM M1 with the following 

restrictions: (1) M1’s head never moves left from its initial 

position. (2) M1 never writes a blank. 



MAPPING ULP TO MPCP 

 Given T and w, the idea is to map the transition 

function of T to strings in the two lists in such a way 

that a matching of the two lists will correspond to a 

concatenation of the tape contents at each time 

step. 

 We will illustrate this with an example first. 



EXAMPLE OF ULP TO MPCP 

 Consider the following Turing machine: 

 T = ({q0, q1},{0,1},{0,1,#}, , q0, #, {q1}) 

  

  

  
  

 (q0,1)=(q0,0,R)  (q0,0)=(q1,0,L) 

 Consider input w=110. 

0/0, L 

1/0, R 

q0 q1 



EXAMPLE OF ULP TO MPCP 

 Now we will construct an MPCP instance from T 

and w. There are five types of strings in list A and B: 

 Starting string (first pair): 

    List A  List B 

    #   #q0110# 



EXAMPLE OF ULP TO MPCP 

 Strings from the transition function : 

  List A List B 

   q01  0q0 (from (q0,1)=(q0,0,R)) 

   0q00  q100 (from (q0,0)=(q1,0,L)) 

  1q00  q110 (from (q0,0)=(q1,0,L)) 



EXAMPLE OF ULP TO MPCP 

 Strings for copying: 

   List A  List B 

    #   # 

   0   0 

   1   1 



EXAMPLE OF ULP TO MPCP 

 Strings for consuming the tape symbols at the end: 

 List A List B   List A List B 

  0q1 q1     0q11  q1 

  1q1 q1     1q10  q1 

  q10 q1     0q10  q1 

  q11 q1     1q10  q1 



EXAMPLE OF ULP TO MPCP 

 Ending string: 

   List A  List B 

    q1##   # 

  

Now, we have constructed an MPCP instance. 



EXAMPLE OF ULP TO MPCP 

 List A List B       List A List B 

1.   #  #q0110#  9.    0q1    q1 

2.   q01 0q0   10.  1q1    q1 

3.  0q00 q100   11.  q10    q1 

4.  1q00 q110   12.  q11    q1 

5.  #  #   13.  0q11    q1 

6.   0  0   14.  1q10    q1 

7.   1  1   15.  0q10    q1 

8.   q1## #   16. 1q10    q1 



EXAMPLE OF ULP TO MPCP 

 This ULP instance has a solution: 

 q0110  0q010  00q00  0q100 (halt) 

 Does this MPCP instance has a solution? 

List A: 

List B: 

# q0 1 1 0 # 0 q0 1 0 # 0 0 q0 0 # 0 q1 0 0 # q1 0 # q1 # # 

# q0 1 1 0 # 0 q0 1 0 # 0 0 q0 0 # 0 q1 0 0 # q1 0 # q1 # # 

The solution is the sequence of indices: 

2, 7, 6, 5, 6, 2, 6, 5, 6, 3, 5, 15, 6, 5, 11, 5, 8 



CLASS DISCUSSION 

 Consider the input w = 101. Construct the 

corresponding MPCP instance I and show that T will 

accept w by giving a solution to I. 



CLASS DISCUSSION (CONT’D) 

 List A List B       List A List B 

1.   #  #q0101#  9.    0q1    q1 

2.   q01 0q0   10.  1q1    q1 

3.  0q00 q100   11.  q10    q1 

4.  1q00 q110   12.  q11    q1 

5.  #  #   13.  0q11    q1 

6.   0  0   14.  1q10    q1 

7.   1  1   15.  0q10    q1 

8.   q1## #   16. 1q10    q1 



MAPPING ULP TO MPCP 

 We summarize the mapping as follows. Given T 

and w, there are five types of strings in list A and B: 

 Starting string (first pair): 

    List A  List B 

    #   #q0w# 

 where q0 is the starting state of T. 



MAPPING ULP TO MPCP 

 Strings from the transition function : 

  List A List B 

   qX  Yp  from (q,X)=(p,Y,R) 

   ZqX  pZY  from (q,X)=(p,Y,L) 

  q#  Yp#  from (q,#)=(p,Y,R) 

  Zq#  pZY# from (q,#)=(p,Y,L) 

 where Z is any tape symbol except the blank. 

  



MAPPING ULP TO MPCP 

 Strings for copying: 

   List A  List B 

   X   X 

 where X is any tape symbol (including the blank). 



MAPPING ULP TO MPCP 

 Strings for consuming the tape symbols at the end: 

    List A List B 

    Xq  q 

    qY  q 

    XqY  q 

 where q is an accepting state, and each X and Y is 

any tape symbol except the blank. 



MAPPING ULP TO MPCP 

 Ending string: 

   List A  List B 

    q##   # 

 where q is an accepting state. 
  

 Using this mapping, we can prove that the original ULP 

instance has a solution if and only if the mapped 

MPCP instance has a solution. (Textbook, p.402, 

Theorem 9.19) 


