
DECIDABLE

 A problem P is decidable if it can be solved by a

Turing machine T that always halt. (We say that P

has an effective algorithm.)

 Note that the corresponding language of a

decidable problem is recursive.

UNDECIDABLE

 A problem is undecidable if it cannot be solved by

any Turing machine that halts on all inputs.

 Note that the corresponding language of an

undecidable problem is non-recursive.

COMPLEMENTS OF RECURSIVE LANGUAGES

 Theorem: If L is a recursive language, L is also

recursive.

 Proof: Let M be a TM for L that always halt.

We can construct another TM M from M for

L that always halts as follows:

Accept

Reject

Accept

Reject
M

M

Input

COMPLEMENTS OF RE LANGUAGES

 Theorem: If both a language L and its complement

L are RE, L is recursive.

 Proof: Let M1 and M2 be TM for L and L

respectively. We can construct a TM M from

M1 and M2 for L that always halt as follows:

Accept

Accept

Accept

Reject

M1
M

Input

M2

A NON-RECURSIVE RE LANGUAGE

 We are going to give an example of a RE language

that is not recursive, i.e., a language L that can be

accepted by a TM, but there is no TM for L that

always halt.

 Again, we need to make use of the binary encoding

of a TM.

Recursive

Recursively

Enumerable (RE)

Non-recursively

Enumerable (Non-RE)

Ld

We will now

look at an

example in

this region.

A NON-RECURSIVE RE LANGUAGE

 Recall that we can encode each TM uniquely as a

binary number and enumerate all TM’s as T1, T2, …,

Tk, … where the encoded value of the kth TM, i.e.,

Tk, is k.

 Consider the language Lu:

 Lu = {(k, w) | Tk accepts input w}

 This is called the universal language.

UNIVERSAL LANGUAGE

 Note that designing a TM to recognize Lu is the

same as solving the problem of given k and w,

decide whether Tk accepts w as its input.

 We are going to show that Lu is RE but non-

recursive, i.e., Lu can be accepted by a TM, but

there is no TM for Lu that always halt.

UNIVERSAL TURING MACHINE
 To show that Lu is RE, we construct a TM U, called

the universal Turing machine, such that Lu = L(U).

 U is designed in such a way that given k and w, it will

mimic the operation of Tk on input w:

1 1 1 1 1 1 0

k w

U will move back and forth to mimic Tk on input w.
separator

UNIVERSAL TURING MACHINE

(k, w) Tk
w

Accept Accept

U

Why cannot we use a similar method to construct

a TM for Ld?

i.e., k1111110w

UNIVERSAL LANGUAGE
 Since there is a TM that accepts Lu, Lu is RE. We are

going to show that Lu is non-recursive.

 If Lu is recursive, there is a TM M for Lu that always

halt. Then, we can construct a TM M’ for Ld as follows:

k Copy
k1111110k

M
Accept

Reject

Reject

Accept

M’

A NON-RECURSIVE RE LANGUAGE

 Since we have already shown that Ld is non-recursively

enumerable, so M’ does not exist and there is no such

M.

 Therefore the universal language is recursively

enumerable but non-recursive.

HALTING PROBLEM

 Consider the halting problem:

 Given (k,w), determine if Tk halts on w.

 It’s corresponding language is:

Lh = { (k, w) | Tk halts on input w}

 The halting problem is also undecidable, i.e., Lh is

non-recursive. To show this, we can make use of

the universal language problem.

HALTING PROBLEM

 We want to show that if the halting problem can be

solved (decidable), the universal language problem

can also be solved.

 So we will try to reduce an instance (a particular

problem) in Lu to an instance in Lh in such a way

that if we know the answer for the latter, we will

know the answer for the former.

CLASS DISCUSSION

 Consider a particular instance (k,w) in Lu, i.e., we

want to determine if Tk will accept w. Construct an

instance I=(k’,w’) in Lh from (k,w) so that if we know

whether Tk’ will halt on w’, we will know whether Tk will

accept w.

HALTING PROBLEM

 Therefore, if we have a method to solve the halting

problem, we can also solve the universal language

problem. (Since for any particular instance I of the

universal language problem, we can construct an

instance of the halting problem, solve it and get the

answer for I.) However, since the universal problem is

undecidable, we can conclude that the halting problem

is also undecidable.

MODIFIED POST

CORRESPONDENCE PROBLEM

 We have seen an undecidable problem, that is,

given a Turing machine M and an input w,

determine whether M will accept w (universal

language problem).

 We will study another undecidable problem that is

not related to Turing machine directly.

MODIFIED POST CORRESPONDENCE PROBLEM

(MPCP)

 Given two lists A and B:

 A = w1, w2, …, wk B = x1, x2, …, xk

 The problem is to determine if there is a sequence of

one or more integers i1, i2, …, im such that:

 w1wi1
wi2

…wim
 = x1xi1

xi2
…xim

 (wi, xi) is called a corresponding pair.

EXAMPLE

A B

i

1

2

3

wi

1

0111

10

xi

111

10

0
This MPCP instance has a solution: 3, 2, 2, 4:

w1w3w2w2w4 = x1x3x2x2x4 = 1101111110

4

11 1

CLASS DISCUSSION

A B

i

1

2

3

wi

10

011

101

xi

101

11

011

Does this MPCP instance have a solution?

UNDECIDABILITY OF PCP

 To show that MPCP is undecidable, we will reduce the

universal language problem (ULP) to MPCP:

 If MPCP can be solved, ULP can also be solved. Since we

have already shown that ULP is un-decidable, MPCP must

also be undecidable.

Universal

Language

Problem (ULP)

MPCP A mapping

MAPPING ULP TO MPCP

 Mapping a universal language problem instance to

an MPCP instance is not as easy.

 In a ULP instance, we are given a Turing machine

M and an input w, we want to determine if M will

accept w. To map a ULP instance to an MPCP

instance success-fully, the mapped MPCP instance

should have a solution if and only if M accepts w.

MAPPING ULP TO MPCP

Given:

(T,w)

Two lists:

A and B

Construct an

MPCP instance

If T accepts w, the two lists can be matched.

Otherwise, the two lists cannot be matched.

ULP instance MPCP instance

MAPPING ULP TO MPCP

 We assume that the input Turing machine T:

 Never prints a blank

 Never moves left from its initial head position.

 These assumptions can be made because:

 Theorem (p.346 in Textbook): Every language accepted by

a TM M2 will also be accepted by a TM M1 with the following

restrictions: (1) M1’s head never moves left from its initial

position. (2) M1 never writes a blank.

MAPPING ULP TO MPCP

 Given T and w, the idea is to map the transition

function of T to strings in the two lists in such a way

that a matching of the two lists will correspond to a

concatenation of the tape contents at each time

step.

 We will illustrate this with an example first.

EXAMPLE OF ULP TO MPCP

 Consider the following Turing machine:

 T = ({q0, q1},{0,1},{0,1,#}, , q0, #, {q1})

 (q0,1)=(q0,0,R) (q0,0)=(q1,0,L)

 Consider input w=110.

0/0, L

1/0, R

q0 q1

EXAMPLE OF ULP TO MPCP

 Now we will construct an MPCP instance from T

and w. There are five types of strings in list A and B:

 Starting string (first pair):

 List A List B

 # #q0110#

EXAMPLE OF ULP TO MPCP

 Strings from the transition function :

 List A List B

 q01 0q0 (from (q0,1)=(q0,0,R))

 0q00 q100 (from (q0,0)=(q1,0,L))

 1q00 q110 (from (q0,0)=(q1,0,L))

EXAMPLE OF ULP TO MPCP

 Strings for copying:

 List A List B

 # #

 0 0

 1 1

EXAMPLE OF ULP TO MPCP

 Strings for consuming the tape symbols at the end:

 List A List B List A List B

 0q1 q1 0q11 q1

 1q1 q1 1q10 q1

 q10 q1 0q10 q1

 q11 q1 1q10 q1

EXAMPLE OF ULP TO MPCP

 Ending string:

 List A List B

 q1## #

Now, we have constructed an MPCP instance.

EXAMPLE OF ULP TO MPCP

 List A List B List A List B

1. # #q0110# 9. 0q1 q1

2. q01 0q0 10. 1q1 q1

3. 0q00 q100 11. q10 q1

4. 1q00 q110 12. q11 q1

5. # # 13. 0q11 q1

6. 0 0 14. 1q10 q1

7. 1 1 15. 0q10 q1

8. q1## # 16. 1q10 q1

EXAMPLE OF ULP TO MPCP

 This ULP instance has a solution:

 q0110 0q010 00q00 0q100 (halt)

 Does this MPCP instance has a solution?

List A:

List B:

q0 1 1 0 # 0 q0 1 0 # 0 0 q0 0 # 0 q1 0 0 # q1 0 # q1 # #

q0 1 1 0 # 0 q0 1 0 # 0 0 q0 0 # 0 q1 0 0 # q1 0 # q1 # #

The solution is the sequence of indices:

2, 7, 6, 5, 6, 2, 6, 5, 6, 3, 5, 15, 6, 5, 11, 5, 8

CLASS DISCUSSION

 Consider the input w = 101. Construct the

corresponding MPCP instance I and show that T will

accept w by giving a solution to I.

CLASS DISCUSSION (CONT’D)

 List A List B List A List B

1. # #q0101# 9. 0q1 q1

2. q01 0q0 10. 1q1 q1

3. 0q00 q100 11. q10 q1

4. 1q00 q110 12. q11 q1

5. # # 13. 0q11 q1

6. 0 0 14. 1q10 q1

7. 1 1 15. 0q10 q1

8. q1## # 16. 1q10 q1

MAPPING ULP TO MPCP

 We summarize the mapping as follows. Given T

and w, there are five types of strings in list A and B:

 Starting string (first pair):

 List A List B

 # #q0w#

 where q0 is the starting state of T.

MAPPING ULP TO MPCP

 Strings from the transition function :

 List A List B

 qX Yp from (q,X)=(p,Y,R)

 ZqX pZY from (q,X)=(p,Y,L)

 q# Yp# from (q,#)=(p,Y,R)

 Zq# pZY# from (q,#)=(p,Y,L)

 where Z is any tape symbol except the blank.

MAPPING ULP TO MPCP

 Strings for copying:

 List A List B

 X X

 where X is any tape symbol (including the blank).

MAPPING ULP TO MPCP

 Strings for consuming the tape symbols at the end:

 List A List B

 Xq q

 qY q

 XqY q

 where q is an accepting state, and each X and Y is

any tape symbol except the blank.

MAPPING ULP TO MPCP

 Ending string:

 List A List B

 q## #

 where q is an accepting state.

 Using this mapping, we can prove that the original ULP

instance has a solution if and only if the mapped

MPCP instance has a solution. (Textbook, p.402,

Theorem 9.19)

